skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Agarwal, Gaurav Kumar"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper studies the problem of information theoretic secure communication when a source has private messages to transmit to m destinations, in the presence of a passive adversary who eavesdrops an unknown set of k edges. The information theoretic secure capacity is derived over unit-edge capacity separable networks, for the cases when k = 1 and m is arbitrary, or m = 3 and k is arbitrary. This is achieved by first showing that there exists a secure polynomial-time code construction that matches an outer bound over two-layer networks, followed by a deterministic mapping between two-layer and arbitrary separable networks. 
    more » « less